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Abstract
We quantize the elastic modes in a plate. For this, we find a complete orthogonal
set of eigenfunctions of the elastic equations and normalize them. These are
the phonon modes in the plate and their specific forms and dispersion relations
are manifested in low-temperature experiments in ultra-thin membranes.

PACS numbers: 68.60.Bs, 43.20.Bi, 43.35.Ns, 43.40.Dx, 43.40.At

1. Introduction

Nowadays, the devices used in many high-sensitivity applications reach such a level of
miniaturization that the wavelength of the quantum quasiparticles used in their modeling
is comparable to the dimensions of the device. The examples we are most familiar with are
the ultra-sensitive electromagnetic radiation detectors. In a very general way of speaking,
such detectors consist of some thin metallic films, a few tens of nanometers in thickness,
deposited on a dielectric membrane. The dielectric membrane is usually made of SiNx and
has a thickness of the order of 100 nm. To reach the level of sensitivity and speed required for
applications, these detectors have to work at sub-Kelvin temperatures and at such temperatures
the dominant phonon wavelength is comparable to the devices’ thickness [1–9].

To describe the thermal properties of such membranes or detectors, the electron–phonon
interaction, or in general any interaction of phonons with impurities or disorder in the
membrane, we have to know the phonon modes in the membrane. For this, we have to
find the eigenmodes of the elastic equations and quantize the elastic field.

For infinite half-spaces, the quantization has been carried out by Ezawa [10].

1.1. Elastic eigenmodes in plates with parallel surfaces

The dielectric membranes that we discuss here are actually plates with parallel surfaces in the
usual nomenclature of elasticity theory. Therefore, to make the paper more readable to the
mathematically inclined reader, as well as to the people working in elasticity theory, we shall
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Figure 1. Typical plate, or membrane, like those used to support mesoscopic detectors. The
thickness d is of the order of 100 nm and l � d. The plate surfaces are parallel to the xy plane
and cut the z axis at ±d/2.

apply here this nomenclature in spite of the fact that experimentalists seem to prefer the term
‘membrane’.

The elastic eigenmodes of 3D bulk systems are simple plane waves of three different
polarizations (σ ), two transversal (σ = t) and one longitudinal (σ = l). In the presence of
boundaries these bulk modes are coupled to each other and form a new set of eigenmodes.

The elastic eigenmodes in plates with parallel surfaces have been studied for a long time,
mostly in connection with sound propagation and earthquakes (see, for example, [11]). To
introduce these modes, let us consider a plate of thickness d and area l2, with l � d. The two
surfaces of the plate are parallel to the (xy) plane and cut the z axis at ±d/2 (see figure 1).
Throughout the paper we shall use V for the volume of the plate (or in general of the solid that
we describe—see section 2.1) and ∂V for its surface. We shall assume that l is much bigger
than any wavelength of the elastic perturbations considered here. The displacement field at
position r is going to be denoted by u(r) or v(r). The unit vectors along the coordinate axes
are denoted by x̂, ŷ and ẑ.

The displacement fields obey the dynamic equation

ρ∂2ui/∂t2 = cijkl∂j ∂kul ∀ i = 1, 2, 3. (1)

Here, as everywhere in this paper we shall assume summation over repeated indices.
Assuming that the medium is isotropic (see, for example, [11] for the constraints on the
tensor [c]), equation (1) is reduced to ∂2ui/∂t2 = ∂jpij , with pij defined as in [10],
pij = ρ−1cijkl∂kul = (

c2
l − 2c2

t

)
(∂kuk)δij + c2

t (∂iuj + ∂jui), and cl, ct the longitudinal and
transversal sound velocities, respectively.

Introducing the operator L̃ (we shall use tilde for operators and hat for unit vectors) by
L̃u ≡ ρ−1cijkl∂j ∂kul = c2

l grad div u − c2
t curl curl u ≡ c2

l ∇ · ∇ · u − c2
t ∇ × ∇ × u, the wave

equation (1) becomes

∂2u/∂t2 = L̃u. (2)

The surface is free, so the stress should be zero there. This amounts to the boundary conditions
[10, 11]

pijnj = 0, on ∂V, ∀ i = 1, 2, 3, (3)

where n̂ is the unit vector normal to the surface of components n1, n2 and n3—we shall use
this notation throughout the paper.

Applying equations (2) and (3) to the plate we obtain the elastic eigenmodes, which
are classified into three groups, according to their symmetry or polarization direction: the
horizontal shear (h), the symmetric (s) and the antisymmetric (a) Lamb waves. We call these
different groups ‘polarizations’ and shall denote them by σ , as in the case of the bulk phonons.
All these waves are propagating (or decaying, if the wave vector is complex) along the plate
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and have a stationary form in the direction perpendicular to the surfaces. The h wave is
polarized parallel to the surfaces and perpendicular to the propagation direction. The s and
a waves are superpositions of longitudinal and transversal waves, polarized in a plane that is
perpendicular to the surfaces and contains the propagation direction. The difference between
the s and the a waves comes from the fact that the displacement field along the z direction
is symmetric for the s wave and antisymmetric for the a wave, while the displacement field
along the propagation direction is antisymmetric for the s wave and symmetric for the a wave
(see below). Explicitly, the three types of modes are

uh = (k̂‖ × ẑ) · Nh cos

[
mπ

b

(
z − b

2

)]
ei(k‖·r−ωt), m = 0, 1, 2, . . . , (4a)

us = Ns

{
ẑ · k‖

[
−2ktkl cos

(
kt

b

2

)
sin (klz) +

[
k2
t − k2

‖
]

cos

(
kl

b

2

)
sin (ktz)

]

+ k̂‖ · ikt

[
2k2

‖ cos

(
kt

b

2

)
cos (klz) +

[
k2
t − k2

‖
]

cos

(
kl

b

2

)
cos (ktz)

]}
ei(k‖·r−ωt), (4b)

ua = Na

{
ẑ · k‖

[
2ktkl sin

(
kt

b

2

)
cos(klz) − [

k2
t − k2

‖
]

sin

(
kl

b

2

)
cos(ktz)

]

+ k̂‖ · ikt

[
2k2

‖ sin

(
kt

b

2

)
sin(klz) +

[
k2
t − k2

‖
]

sin

(
kl

b

2

)
sin(ktz)

]}
ei(k‖·r−ωt), (4c)

where k̂‖ is the unit vector along the propagation direction and k‖ = k‖ · k̂‖. In the s and
a modes, the wave vector in the z direction takes two values, kt and kl , one corresponding
to the transversal component of the mode, the other one corresponding to the longitudinal
component. The constants Nh,Ns and Na are the normalization constants, which will be
calculated in section 3.

The components of the wave vectors, kt , kl and k‖ obey the transcendental equations [11]

tan
(

d
2 kt

)
tan

(
d
2 kl

) = − 4klktk
2
‖[

k2
t − k2

‖
]2 (5a)

and

tan
(

d
2 kt

)
tan

(
d
2 kl

) = −
[
k2
t − k2

‖
]2

4klktk
2
‖

(5b)

for symmetric and antisymmetric waves, respectively.
All the solutions of the elastic equation (2) are given by equations (4a), (4b) and

(4c), with m taking all the natural values, 0, 1, . . ., whereas kt and kl are the solutions of
equations (5a) and (5b). k‖ can be a complex number, but the complete, orthogonal set of
phonon modes that we shall use in the quantization of the elastic field are those with k‖ running
from 0 to ∞.

The paper is organized as follows. In section 2.1, we show that L̃ is self-adjoint even
when applied to the displacement field of an elastic body of arbitrary shape. Therefore, we
can form a complete orthonormal set of its eigenfunctions.

The fact that the elastic modes (4) corresponding to different quantum numbers are
orthogonal to each other is proved in section 2.2, based on the Hermiticity of L̃.

The normalization constants are calculated in section 3 and the formal procedure of
quantizing the elastic field is presented in section 4.

We apply this formalism elsewhere to calculate the phonon scattering in amorphous thin
plates (membranes) [14].
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2. Orthogonality and completeness of the set of elastic eigenmodes

2.1. Self-adjointness of the operator L̃

We shall prove the self-adjointness of L̃ on an arbitrary finite volume V . We assume that V

has the smooth border ∂V . The operator L̃ acts on the Hilbert space H which consists of the
vector functions defined on V , which are integrable in modulus square. The scalar product on
H is defined as usual,

〈v|u〉 =
∫

V

v†(r) · u(r) d3r, (6)

and the norm is ‖u‖ ≡ 〈u|u〉1/2. The domain of L̃, denoted by D(L̃), is formed of such
functions u(r) ∈ H, so that L̃u(r) exists and it is contained in H. Moreover, the functions
from D(L̃) should obey the boundary conditions (3). Ezawa showed that L̃ is Hermitian [10].
We will show now that L is also self-adjoint.

First, for a formal treatment, in this section we will understand the derivatives in a
generalized sense. If f (r) is an arbitrary function on V , then ∂if is defined as the function
that satisfies ∫

V

g(r)∂if (r) d3r =
∫

∂V

f (r)g(r)ni d2r −
∫

V

f (r)∂ig(r) d3r, (7)

for any function g(r) of class C1(V ) (i.e. g(r) is derivable, with continuous first derivatives
on V ) and all the integrals on the right-hand side of equation (7) exist and are finite.

Returning to our operator, let us first note that the space D(L̃) includes the space of twice
derivable functions, with continuous, integrable, second derivatives, C2(V ), which is dense
in H. Therefore D(L̃) is also dense in H and L̃ is a symmetric operator. Then we define the
adjoint operator L̃† and its domain D(L̃†). For this, let v be a function in H, so that 〈v|L̃u〉 is
a continuous linear functional in u ∈ D(L̃), i.e. there exists an Mv > 0 for which

〈v|L̃u〉 � Mv‖u‖ (8)

for any u ∈ D(L̃). By the Riesz–Fréchet theorem [12], there exists v∗ ∈ H so that
〈v|L̃u〉 = 〈v∗|u〉 for any u ∈ D(L̃). The adjoint operator L̃† is defined by the relation
L̃†v = v∗, for all v that satisfy (8). The functions that satisfy (8) form the domain of
L̃†, denoted by D(L̃†). Since L̃ is Hermitian, if v, u ∈ D(L̃), then 〈v|L̃u〉 = 〈L̃v|u〉 is a
linear functional, so any function from D(L̃) is included in D(L̃†). Therefore we can write
D(L̃) ⊂ D(L̃†). To prove that L̃ is self-adjoint, we have to show that also D(L̃†) ⊂ D(L̃), so
in the end D(L̃†) = D(L̃) and L̃ = L̃†.

For this, let us take v ∈ D(L̃†) and u ∈ D(L̃). Integrating by parts we get

ρ〈v|L̃u〉 =
∫

V

v∗
i cijkl∂j ∂kul d3r (9)

= −
∫

∂V

(∂j v
∗
i )cijklnkul d2r +

∫
V

(∂k∂jv
∗
i )cijklul d3r

= −
∫

∂V

(∂j v
∗
i )cijklnkul d2r + ρ〈L̃v|u〉 ≡ ρ〈L̃†v|u〉, (10)

where we used cijklnj ∂kul = 0 on ∂V (equation (3)), and the simplified notation

ρ〈L̃v|u〉 ≡
∫

V

(cijkl∂j ∂kv
∗
i )ul d3r =

∫
V

(clkji∂k∂j v
∗
i )ul d3r, (11)
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although v is not necessarily a function in D(L̃). The last equality in equation (11) is obtained
using cijkl = cjikl = cij lk = cklij [11] and permuting the partial derivatives. But equation (10)
means that

〈(L̃ − L̃†)v|u〉 = ρ−1
∫

∂V

∂j v
∗
i nkcijklul d2r (12)

for any u ∈ D(L̃). If (∂jv
∗
i )nkcijkl is not identically zero on ∂V , then we can find u so that the

surface integral in (12) is different from zero. This implies that 〈(L̃ − L̃†)v|u〉 �= 0, so v �= 0
on a set of measure larger than zero in the interior of V , denoted as V ◦. In such a case, we can
find a nonempty compact set S ⊂ V ◦ and a function u′, which is twice derivable, zero outside
S and satisfies

〈(L̃ − L̃†)v|u′〉 �= 0. (13)

Since u′ is zero outside S and S is a compact set in V ◦, this means that both u′ and any of its
derivatives are zero on ∂V ; therefore u′ ∈ D(L̃). Now, u′(r ∈ ∂V ) = 0 implies that∫

∂V

∂j v
∗
i nkcijkl(ul + u′

l) d2r =
∫

∂V

∂j v
∗
i nkcijklul d2r, (14)

which would mean that 〈(L̃ − L̃†)v|(u + u′)〉 = 〈(L̃ − L̃†)v|u〉. Equation (13), on the other
hand, implies that

〈(L̃ − L̃†)v|(u + u′)〉 �= 〈(L̃ − L̃†)v|u〉. (15)

Since equation (12) should be valid for any function in D(L̃), including u and u + u′ and
equation (14) is true by construction, this implies that (15) is a contradiction; therefore
(∂j v

∗
i )nkcijkl = 0 on ∂V . Moreover, by the definition of D(L̃†) and the Riesz–Fréchet

theorem, clkji∂k∂j vi ≡ ρL̃†v ∈ H. Therefore v ∈ D(L̃), so D(L̃†) = D(L̃) and L̃ = L̃†, i.e.
the operator L̃ is self-adjoint on an arbitrary, finite volume V . Therefore it has an infinite,
discrete set of eigenvalues and its eigenfunctions form a complete set.

It is then straightforward to extend the above proof to the rectangular plate with the
boundary conditions (3) on its surfaces and periodic boundary conditions on the edges. Then
the operator L̃ is self-adjoint also in this case and it has a discrete, infinite set of real eigenvalues
and a complete set of eigenfunctions. To find from the wavefunctions of the form (4) a
complete, orthonormal set, we shall use the operator k̃‖ ≡ i(∂x +∂y), which is also self-adjoint
when acting on the rectangular plate with periodic boundary conditions at the edges. Since
L̃ and k̃‖ commute and they are both self-adjoint operators, if we find all the eigenfunctions
common to L̃ and k̃‖, then we have a complete set. But these functions are given by equations
(4), with real k‖, and kl, kl satisfying (5).

2.2. Orthogonality of the elastic eigenmodes

Now we study the orthogonality of the elastic eigenmodes of the plate. For this, we write the
functions that appear in equations (4a)–(4c) in general as uk‖,kt ,σ (r) ≡ ukt ,σ (z)eik‖·r, where we
separated the x and y dependence of the fields from the z dependence and we disregarded the
time dependence. By σ we denote the ‘polarization’ h, s or a. We shall not use kl explicitly
in the notations below, since it is determined implicitly by kt , k‖, and equations (5); k‖ takes
discrete, but very dense real values, fixed by the periodic boundary conditions at the edges of
the plate. First we observe that

〈
uk‖,kt ,σ

∣∣uk′
‖,k

′
t ,σ

′
〉 = 2πδk‖,k′

‖

∫ b/2

−b/2
u†

kt ,σ
(z)uk′

t ,σ
′(z) dz, (16)



10434 D V Anghel and T Kühn

so we are left to study the orthogonality of functions with the same k‖. For simplicity we
choose k‖ = x̂ · k‖, so the h waves are polarized in the ŷ direction and the s and a waves
have displacement fields in the (xz) plane. Since the displacement fields of the h waves are
perpendicular to the displacement fields of the s and a waves, any h wave is orthogonal to any
s or a wave. Similarly, for the same k‖, the displacement fields of any of the s and a waves,
although in the same plane, are orthogonal to each other due to their opposite symmetries. We
conclude that ∫ b/2

−b/2
u†

kt ,σ
(z)uk′

t ,σ
′(z) dz = 0

for any kt and k′
t , if σ �= σ ′. Therefore

〈
uk‖,kt ,σ

∣∣uk′
‖,k

′
t ,σ

′
〉 ∝ δk‖,k′

‖δσ,σ ′ .

We are left to show that
〈
uk‖,kt ,σ

∣∣uk‖,k′
t ,σ

〉 ∝ δkt ,k
′
t

which follows simply from the
Hermiticity of the operator L̃. We calculate the matrix element〈

uk‖,kt ,σ

∣∣L̃uk‖,k′
t ,σ

〉 = −ω2
k‖,k′

t ,σ

〈
uk‖,kt ,σ

∣∣uk‖,k′
t ,σ

〉
= 〈

L̃uk‖,kt ,σ

∣∣uk‖,k′
t ,σ

〉 = −ω2
k‖,kt ,σ

〈
uk‖,kt ,σ

∣∣uk‖,k′
t ,σ

〉
.

But since for given k‖ and σ , the eigenstates of L̃ are not degenerate,
〈
uk‖,kt ,σ

∣∣uk‖,k′
t ,σ

〉 = 0,
unless kt = k′

t and, of course, kl = k′
l . This completes the proof and〈

uk‖,kt ,σ

∣∣uk′
‖,k

′
t ,σ

′
〉 ∝ δσ,σ ′δk‖,k′

‖δkt ,k
′
t
. (17)

3. Normalization of the elastic modes

If A = l × l is the area of the plate, then its volume is V = Ad. The scalar product (17) should
give 〈

uk‖,kt ,σ

∣∣uk′
‖,k

′
t ,σ

′
〉 = δσ,σ ′δk‖,k′

‖δkt ,k
′
t
. (18)

For horizontal shear waves, the normalization constant is simple to calculate. In this case,
let us write uk‖,kt ,h simply as uk‖,m,h (see (4a)) and we obtain

∥∥uk‖,m,h

∥∥2 = (
Nk‖,m,h

)2 V

2
, for m > 0, (19a)

= (
Nk‖,m,h

)2
V, for m = 0. (19b)

So Nk‖,0,h = V −1/2 and Nk‖,m>0,h = (2/V )1/2.
For symmetric Lamb modes, from equation (5b) we calculate kl and kt as functions of k‖.

The results are shown in figure 2(a). As expected, for each value of k‖, the wave vectors kl

and kt take only discrete values, but not as simple as the values corresponding to the h modes
(4a). Each curve in figure 2(a) corresponds to a different branch of the dispersion relation,
ωk‖,kt (k‖,m),s , where m = 0, 1, . . ., denotes the branch number. Branches with bigger m are
placed above branches with smaller m.

As k‖ increases, kl(k‖,m) decreases and, after reaching the value 0, turns imaginary. On
the other hand, first kt (k‖,m) increases with k‖, reaches a maximum value and then decreases
monotonically as k‖ increases to infinity. Its decrease is bounded for all branches, except the
lowest one, where, after reaching zero at some finite k‖, it turns imaginary in the lower-left
quadrant of figure 2(a). For the clarity of the calculations, the imaginary values of kl and kt
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Figure 2. The curves (kl(k‖), kt (k‖)) for symmetric (a) and antisymmetric (b) Lamb modes. On
each curve k‖ varies from 0 to ∞, as we go from its right end to the left. The different curves
correspond to different branches of the dispersion relation, i.e. to different values of kl and kt at
k‖ = 0. Both kl and kt may take real and imaginary values. The imaginary values of kl , denoted
by κl are to the right of the vertical axis and the imaginary values of kt , denoted by κt are below the
horizontal axis in both figures. As in the rest of the paper, d is the thickness of the plate. For these
plots we used cl/ct = 1.66, corresponding to SiNx plates. The + and − signs in the upper-right
quadrants are only for orientation purposes.

are denoted as iκl and iκt , respectively, where κl and κt take real, positive values. Both κl and
κt increase without limit as k‖ increases to infinity.

We encounter a similar situation for the antisymmetric Lamb modes (see figure 2(b)). The
only marked differences between the symmetric and antisymmetric modes are the following:
the asymptotic values of (d/2) · kt (k‖ → ∞,m) are π, 2π, . . ., for symmetric modes and
π/2, 3π/2, . . ., for antisymmetric modes; the maxima of (d/2) · kt (k‖,m) are (2m + 1)π/2
for the symmetric modes and mπ for the antisymmetric modes. Also, for the antisymmetric
modes kt (k‖, 0) (i.e. the lowest branch) takes only imaginary values.

Integrating |us |2 over the volume of the plate and using the transcendental equation (5a),
together with Snell’s law, ω2 = c2

t

(
k2
t + k2

‖
) = c2

l

(
k2
l + k2

‖
)
, we obtain the normalization

constant for the symmetric modes in the quadrant I (upper right) of figure 2(a)

(
NI

s

)−2 = A

{
4k2

t k
2
‖ cos2(ktd/2)

((
k2
l + k2

‖
)d

2
− (

k2
l − k2

‖
) sin(kld)

2kl

)

+
(
k2
t − k2

‖
)2

cos2(kld/2)

((
k2
t + k2

‖
)d

2
+

(
k2
t − k2

‖
) sin(ktd)

2kt

)

+ 4ktk
2
‖
(
k2
t − k2

‖
)

cos2(kld/2) sin(ktd)

}
(20a)

in the quadrant II (upper left),

(
N II

s

)−2 = A

{
4k2

t k
2
‖ cos2(ktd/2)

((
κ2

l + k2
‖
) sinh(κld)

2κl

− (
κ2

l − k2
‖
)d

2

)

+
(
k2
t − k2

‖
)2

cosh2(κld/2)

((
k2
t + k2

‖
)d

2
+

(
k2
t − k2

‖
) sin(ktd)

2kt

)

+ 4ktk
2
‖
(
k2
t − k2

‖
)

cosh2(κld/2) sin(ktd)

}
(20b)
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and in the quadrant III (lower left),(
N III

s

)−2 = A

{
4κ2

t k2
‖ cosh2(κtd/2)

((
κ2

l + k2
‖
) sinh(κld)

2κl

− (
κ2

l − k2
‖
)d

2

)

+
(
κ2

t + k2
‖
)2

cosh2(κld/2)

((
κ2

t + k2
‖
) sinh(κtd)

2κt

+
(
κ2

t − k2
‖
)d

2

)

− 4κtk
2
‖
(
κ2

t + k2
‖
)

cosh2(κld/2) sinh(κtd)

}
. (20c)

Similarly, the normalization constants for antisymmetric modes in the three quadrants are(
NI

a

)−2 = A

{
4k2

t k
2
‖ sin2(ktd/2)

((
k2
l + k2

‖
)d

2
+

(
k2
l − k2

‖
) sin(kld)

2kl

)
+

(
k2
t − k2

‖
)2

sin2(kld/2)

×
((

k2
t + k2

‖
)d

2
− (

k2
t − k2

‖
) sin(ktd)

2kt

)
− 4ktk

2
‖
(
k2
t − k2

‖
)

sin2(kld/2) sin(ktd)

}
(21a)(

N II
a

)−2 = A

{
4k2

t k
2
‖ sin2(ktd/2)

((
κ2

l + k2
‖
) sinh(κld)

2κl

+
(
κ2

l − k2
‖
)d

2

)

+
(
k2
t − k2

‖
)2

sinh2(κld/2)

((
k2
t + k2

‖
)d

2
− (

k2
t − k2

‖
) sin(ktd)

2kt

)

− 4ktk
2
‖
(
k2
t − k2

‖
)

sinh2(κld/2) sin(ktd)

}
(21b)

and(
N III

a

)−2 = A

{
4κ2

t k2
‖ sinh2(κtd/2)

((
κ2

l + k2
‖
) sinh(κld)

2κl

+
(
κ2

l − k2
‖
)d

2

)

+
(
κ2

t + k2
‖
)2

sinh2(κld/2)

((
κ2

t + k2
‖
) sinh(κtd)

2κt

− (
κ2

t − k2
‖
)d

2

)

− 4κtk
2
‖
(
κ2

t + k2
‖
)

sinh2(κld/2) sinh(κtd)

}
. (21c)

As one can note, in the quadrants II and III the trigonometric functions are replaced by
hyperbolic functions because of the change kl → iκl in quadrant II and kl → iκl, kt → iκt in
quadrant III.

Although equations (20) and (21), with all their cases, are convenient because they are
ready to use in practical calculations, we shall pack each set into one equation with the help
of the complex wave vector components k̄t ≡ kt + iκt and k̄l ≡ kl + iκl ,

N−2
s = A

{
4|k̄t |2k2

‖|cos(k̄t d/2)|2
((|k̄l|2 + k2

‖
) sinh(κld)

2κl

− (|k̄l|2 − k2
‖
) sin(kld)

2kl

)

+
∣∣k̄2

t − k2
‖
∣∣2|cos(k̄ld/2)|2

((|k̄t |2 + k2
‖
) sinh(κtd)

2κt

+
(|k̄t |2 − k2

‖
) sin(ktd)

2kt

)

− 4k2
‖|cos(k̄ld/2)|2(κt

(|k̄t |2 + k2
‖
)

sinh(κtd)− kt

(|k̄t |2 − k2
‖
)

sin(ktd)
)}

(22a)

N−2
a = A

{
4|k̄t |2k2

‖|sin(k̄t d/2)|2
((|k̄l|2 + k2

‖
) sinh(κld)

2κl

+
(|k̄l|2 − k2

‖
) sin(kld)

2kl

)

+
∣∣k̄2

t − k2
‖
∣∣2|sin(k̄ld/2)|2

((|k̄t |2 + k2
‖
) sinh(κtd)

2κt

− (|k̄t |2 − k2
‖
) sin(ktd)

2kt

)

− 4k2
‖|sin(k̄ld/2)|2(κt

(|k̄t |2 + k2
‖
)

sinh(κtd) + kt

(|k̄t |2 − k2
‖
)

sin(ktd)
)}

. (22b)
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Equations (22) are very general. For the phonon modes (i.e. for real k‖), k̄t and k̄l are either
real or imaginary and the normalization constants (20) and (21) can be extracted from (22)
by taking the limit of the redundant component of k̄t and k̄l going to zero. The normalization
constants (19)–(21) are chosen so that

∥∥uk‖,kt ,σ

∥∥ = 1, for any σ, k‖ and kt . In the following
section the wavefunctions will be multiplied by still another constant, which will give the
correct dimensions to the phonon field.

4. Quantization of the elastic field

For the quantization of the elastic field we start from the classical Hamiltonian

U =
∫

V

(
ρu̇2

2
+

Sij cijklSkl

2

)
, (23)

where Sij are the components of the strain field, which is the symmetric gradient of the
displacement field, Sij ≡ (∇Su)ij = (∂iuj + ∂jui)/2. The canonical variables are the field u
and the conjugate momentum π = ρu̇ which satisfy the Hamilton equations

u̇ = δU

δπ
, (24a)

π̇ = −δU

δu
. (24b)

Equation (24b) is nothing but the dynamic equation (1).
In the second quantization, u and π become the field operators ũ and π̃, respectively. If

we denote by b̃
†
k‖,kt ,σ

and b̃k‖,kt ,σ , the creation and annihilation operators of a phonon with
quantum numbers k‖, kt and polarization σ (in the notation that we used before), then the real
displacement and generalized momentum field operators, ũ(r) = ũ†(r) and π̃(r) = π̃†(r), are

ũ(r) =
∑

k‖,kt ,σ

[
fk‖,kt ,σ (r)b̃k‖,kt ,σ + f∗

k‖,kt ,σ
(r)b̃†

k‖,kt ,σ

]
(25a)

and
π̃(r) = ρ

∑
k‖,kt ,σ

[
ḟk‖,kt ,σ (r)b̃k‖,kt ,σ + ḟ∗

k‖,kt ,σ
(r)b̃†

k‖,kt ,σ

]

= −iρ
∑

k‖,kt ,σ

ωk‖,kt ,σ

[
fk‖,kt ,σ (r)b̃k‖,kt ,σ − fk‖,kt ,σ (r)b̃k‖,kt ,σ

]
, (25b)

where fk‖,kt ,σ (r) ≡ Cuk‖,kt ,σ (r) and C is a real constant which we shall determine from the
commutation relations of the b̃ operators. In equations (25) we do not take kl as a summation
variable, since this is either zero (for h fields), or is determined by k‖ and kt (via equation (5a)
or (5b) for the symmetric and antisymmetric cases, respectively).

From equations (25) we can extract the operators b̃ and b̃† in terms of ũ and π̃. In order
to do this, let us first note from (4) that[

uk‖,kt ,h(r)
]∗ = u−k‖,kt ,h(r), (26a)

whereas[
uk‖,kt ,s(r)

]∗ = u−k‖,kt ,s(r) or
[
uk‖,kt ,s(r)

]∗ = −u−k‖,kt ,s(r), (26b)

depending on whether kt is real or imaginary, and[
uk‖,kt ,a(r)

]∗ = u−k‖,kt ,a(r) or
[
uk‖,kt ,a(r)

]∗ = −u−k‖,kt ,a(r), (26c)
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depending on whether kl is real or imaginary. So∫
V

fT
k‖,kt ,σ

(r) · fk′
‖,k

′
t ,σ

′(r) d3r = aσ,kt ,kl
C2δσ,σ ′δk‖,−k′

‖δkt ,k
′
t
, (27)

where by fT we denote the transpose of the vector f and aσ,kt ,kl
= ±1, according to

equations (26b) and (26c). Multiplying (25a) and (25b) by f†k‖,kt ,σ
(r) and integrating over V ,

we get ∫
V

f†k‖,kt ,σ
(r)ũ(r) d3r = C2

[
b̃k‖,kt ,σ + aσ,kt ,kl

b̃
†
−k‖,kt ,σ

]
, (28a)

∫
V

f†k‖,kt ,σ
(r)π̃(r) d3r = −iρωk‖,kt ,σ C2

[
b̃k‖,kt ,σ − aσ,kt ,kl

b̃
†
−k‖,kt ,σ

]
. (28b)

Solving the system we obtain

b̃k‖,kt ,σ = 1

2C2

[∫
V

f†k‖,kt ,σ
(r)ũ(r) d3r +

i

ρωk‖,kt ,σ

∫
V

f†k‖,kt ,σ
(r)π̃(r) d3r

]
(29)

and

b̃
†
k‖,kt ,σ

= 1

2C2

[∫
V

fT
k‖,kt ,σ

(r)ũ(r) d3r − i

ρωk‖,kt ,σ

∫
V

fT
k‖,kt ,σ

(r)π̃(r) d3r
]

. (30)

Using the canonical commutation relations [ũ(r), ũ(r′)] = [π̃(r), π̃(r′)] = 0 and
[ũ(r), π̃(r′)] = ih̄δ(r − r′), we obtain the commutation relations for the operators b̃ and
b̃†, [

b̃k‖,kt ,σ , b̃k′
‖,k

′
t ,σ

′
] = [

b̃
†
k‖,kt ,σ

, b̃
†
k′

‖,k
′
t ,σ

′
] = 0

and [
b̃k‖,kt ,σ , b̃

†
k′

‖,k
′
t ,σ

′
] = δσ,σ ′δk‖,k′

‖δkt ,k
′
t
,

provided that

C =
√

h̄

2ρωk‖,kt ,σ

. (31)

Using equations (25), with the proper normalization of f, we can write U (23) in the
operator form

U = ρ

2

∫
V

d3r
∑

k‖,kt ,σ

∑
k′

‖,k
′
t ,σ

′

[
ḟ†k‖,kt ,σ

(r)b̃†
k‖,kt ,σ

+ ḟt
k‖,kt ,σ

(r)b̃k‖,kt ,σ

]

× [
ḟk′

‖,k
′
t ,k

′
l ,σ

′(r)b̃k′
‖,k

′
t ,k

′
l ,σ

′ + ḟ�
k′

‖,k
′
t ,k

′
l ,σ

′(r)b̃
†
k′

‖,k
′
t ,k

′
l ,σ

′
]

+
1

2

∫
V

d3r
∑

k‖,kt ,σ

∑
k′

‖,k
′
t ,σ

′

[
∂i[f�

k‖,kt ,σ
(r)]j b̃

†
k‖,kt ,σ

+ ∂i[fk‖,kt ,σ (r)]j b̃k‖,kt ,σ

]

× cijkl · [
∂k

[
fk‖,kt ,σ (r)

]
l
b̃k‖,kt ,σ + ∂k

[
f�
k‖,kt ,σ

(r)
]
l
b̃
†
k‖,kt ,σ

]
=

∑
k‖,kt ,σ

h̄ωk‖,kt ,σ

[
b̃
†
k‖,kt ,σ

b̃k‖,kt ,σ + 1/2
]
. (32)

As expected, the Hamiltonian of the elastic body can be written as a sum of Hamiltonians of
harmonic oscillators. These oscillators are the phonon modes of the plate.

We use this formalism elsewhere to describe the interaction of phonons with the disorder
in amorphous materials [13, 14].
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5. Conclusions

The vibrational modes of a thin plate (4) are well known from elasticity theory [11]. The
purpose of the paper is to quantize the elastic field and for this we have to know if these modes,
or part of them, form a complete set of orthogonal functions. But since the modes are the
solutions of the eigenvalue–eigenvector problem of the operator L̃ (2), we showed that they
form a complete set by proving that L̃ is self-adjoint.

Nevertheless, not all the functions of the form (4) are orthogonal to each other, so to build
the complete orthogonal set of functions, we made use of a generic ‘momentum’ operator,
k̃‖ ≡ i(∂x + ∂y), which commutes with L̃. Since for a plate with infinite lateral extension or
a finite rectangular plate with periodic boundary conditions at the edges the operator k̃‖ is
also self-adjoint, L̃ and k̃‖ admit a common, complete set of orthogonal eigenfunctions. The
degenerate eigenvalues of k̃‖ are, of course, the (real) wave vector components k‖ which are
parallel to the plate surfaces. Therefore, the complete set of eigenfunctions are those given by
equations (4), with real k‖.

In section 2.2, based on the Hermiticity of the operator L̃, we showed that these functions
(4) are indeed orthogonal to each other and in section 3 we calculated the normalization factors.

Having all these ingredients, in section 4 we presented the formal quantization procedure
which is applied elsewhere [13, 14] to calculate the thermal properties of ultra-thin plates
at low temperatures, and to deduce some of the observed features of the standard tunneling
model in bulk amorphous materials.
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